Introduction to Stata (part 2)

Biostat 511 - Fall 2010
Table of Contents

pg.
Logical operators, functions ……………………………………………………………….
11
Subsetting commands: by, if and in …………………...…………………………………..
11
Missing values ………………….…....…………………………………………………….
12
do files ……………………………………………………………………………………..
13
large files …………………………………………………………………………………..
14
Logical operators, functions

The if command (see below) requires that you be able to write logical expressions such as

age>=8

which is read as "age greater than or equal to 8". These expressions can get fairly complex as in

(age>=8)&(sex==1)&(fev~=.)

which is read as "age greater than or equal to 8 and sex equal to 1 and fev not missing" (a period signifies a missing value in Stata) or more briefly as "males 8 and older with nonmissing fev values". The key operators that you need to know about to create these expressions are

>
greater than

~
not

<
less than

|
or

>=
greater than or equal to

&
and

<=
less than or equal to

==
equal to (a double equal sign)

~=
not equal to

You have to be careful about order of evaluation in these expressions since the two expressions

((age>=8)|(sex=1))&(smoke==0)

(age>=8)|((sex=1)&(smoke==0))
give different results. Use parentheses () to make sure you get the order of evaluation that you want (the terms in parentheses get evaluated first).

There are a large number of functions built into Stata that you can use in creating variables (see generate and replace in the Introduction to Stata, part 1). A complete listing and documentation of these functions can be found in the online help under "functions". Here are a few examples

generate lblood = log10(blood)
* make a new variables equal to the log10 of blood

generate ratio = weight/height^2
* make a new variable equal to weight over height

* squared

Quick reference: Functions (see “help functions” for more detail)
Mathematical functions:

abs(varname) takes the absolute value

exp(varname) exponentiates

ln(varname) takes natural log

log(varname) takes natural log

log10(varname) takes log base 10

sqrt(varname) takes square root

varname^x raises varname to the xth power

int(varname) rounds values of varname to the next lowest integer value

max(var1, var2,…) assigns the maximum value of var1, var2, etc to a new variable

min(var1, var2, …) assigns the minimum value of var1, var2, etc. to a new variable

Statistical functions:

uniform() chooses a number randomly between 0 and 1.

Date functions:

mdy(m,d, y) assigns an elapsed time using three separate variables for month, day, and year

Special functions:

missing(varname) evaluates to 1 if the variable is missing for an individual or 0 if it is not missing

Notice that there is a difference between:
generate maxbp = max(bp1, bp2, bp3) /* creates a maximum for each record */

egen maxbp = max(bp) /* finds the maximum bp over the whole dataset and sets maxbp equal to this value for each record */
Subsetting commands: by, if and in
Many Stata commands are preceded by the "by" option and followed by the "if" and/or "in" options. The general form is

by varlist: command if expression in range
where varlist is a list of variables, command is a Stata command, expression is a logical expression and range is a range of observation numbers. by is used to repeat the command for all combinations of the values of the variables in varlist, as in

sort sex smoke

by sex smoke: summarize age fev, detail
* summarize age – fev by levels of sex and

* smoking; give additional details about

* each variable, including median and other percentiles

Note that the dataset must be sorted by the variables in varlist before you can use the by command.

if and in are used to restrict processing of the command. For instance,

summarize age - fev if sex == 0
* summarize age - fev for cases where sex = 0

tabulate smoke if age>=8

* frequency table of smoke for ages 8 and above

list in 1/10

* list cases 1 through 10

Missing values

If you are using infile to read in your data, numeric missing values are entered as a period (.). Missing values for character strings are typically entered as an empty string (""). With insheet, missing values can just be omitted, as in

insheet make price mpg weight gratio

and the data file might look like

Datsun 810,8129,,2750,3.55

,4099,22,2930,3.58

Here, the third variable is missing in the first observation and the first variable is missing in the second observation.

Stata stores missing values in computer memory as very large positive numbers. For the most part, this does not affect your programming (i.e. calculations on missing values using generate or replace yield a missing value for the result), except when you would like to subset using commands such as “greater than.” Some stata commands, such as summarize, automatically ignore missing values. This means that if you type summarize age, and 3 of 100 individuals are missing age information, the number of observations reported back to you by stata will be 97.

Unfortunately, the subsetting commands don’t work this way, so that if you type count if age>0, stata will tell you that there are 100 individuals with ages greater than 0, even though we know 3 are missing. Instead, type count if age>0 & age!=., and stata will report that there are 97 individuals with ages greater than 0 (A silly, but hopefully illustrative example).

do files

Often you will want to repeat a set of commands. Rather then typing the commands in every time, you can create a program to do what you want. In Stata, such programs are called "do- files". To create a do-file you simply type in a series of commands and save them in a text file (you can use Notepad or any other text editor for this purpose. If you use Word, be sure to save the file as a text-only file, not as a Word document. There is also an editor included with Stata - click on Do-file Editor under the "Window" menu.). Once you have saved a series of commands, you just type "do" and the filename in Stata. For example,

do "a:fevanalysis.txt"

Using do files will save you time when you need to repeat similar analyses. For example, you may do an entire analysis and then discover that there was one mistake in your dataset which has changed your results; using a do-file allows you to fix the mistake and then rerun the entire analysis in one step.

Another useful programming practice is to include comments in your do-files that remind you what you are doing. If you come back to this analysis or do file several weeks or months later, it will be much easier to figure out exactly what you did, and thus to understand the results. Single line comments can be included by simply starting the line with *. Use /* …. */ to extend comments over several lines. See the example below.
A sample do file:

log using c:/b536/logfiles/lbw.descrip.log

use c:/datasets/lbw.dta

/* This is one way to write comments that are simply notes to yourself and will not actually be submitted to stata as commands. These notes can exceed one line, but you must remember to type the asterisk and slash at the end*/

*Another way to write comments on one line only

*Just type an asterisk at the beginning of the line

/*the next command tells stata to scroll through the entire program so that you don’t need to hit any keys to continue processing the do file or seeing results on the screen*/

set more off

*logistic regression using age as continuous variable

logistic low age

logit

gen agecat=group(4)

*logistic regression using age as a categorical variable

xi:logistic low i.age

log close

Large files

If you are dealing with a large dataset, you may need to increase the amount of memory available to Stata. You can increase the amount of memory Stata uses by starting it and typing
set mem 40M
in the command window. This will increase memory to 40 megabytes
14

